Questions

Q1.

A bird leaves its nest at time t = 0 for a short flight along a straight line.

The bird then returns to its nest.

The bird is modelled as a particle moving in a straight horizontal line.

The distance, *s* metres, of the bird from its nest at time *t* seconds is given by

$$s = \frac{1}{10}(t^4 - 20t^3 + 100t^2)$$
, where $0 \le t \le 10$

(a) Explain the restriction, $0 \le t \le 10$

(3)

(b) Find the distance of the bird from the nest when the bird first comes to instantaneous rest.

(6)

(Total for question = 9 marks)

Q2.

Unless otherwise indicated, wherever a numerical value of *g* is required, take g = 9.8 m s⁻² and give your answer to either 2 significant figures or 3 significant figures.

A particle, *P*, moves along the *x*-axis. At time *t* seconds, $t \ge 0$, the displacement,

x metres, of *P* from the origin *O*, is given by $x = \frac{1}{2}t^2(t^2 - 2t + 1)$

(a) Find the times when *P* is instantaneously at rest.

(b) Find the total distance travelled by *P* in the time interval $0 \le t \le 2$

(3)

(5)

(c) Show that *P* will never move along the negative *x*-axis.

(2)

(Total for question = 10 marks)

Q3.

A particle, *P*, moves along a straight line such that at time *t* seconds, $t \ge 0$, the velocity of *P*, $v \text{ m s}^{-1}$, is modelled as

$$v = 12 + 4t - t^2$$

Find

(a) the magnitude of the acceleration of *P* when *P* is at instantaneous rest,

(5)

(b) the distance travelled by *P* in the interval $0 \le t \le 3$

(3)

(Total for question = 8 marks)

Q4.

A particle *P* moves along a straight line such that at time *t* seconds, $t \ge 0$, after leaving the point *O* on the line, the velocity, $v \ge 0^{-1}$, of *P* is modelled as

$$v=(7-2t)(t+2)$$

(a) Find the value of *t* at the instant when *P* stops accelerating.

(4)

(b) Find the distance of *P* from *O* at the instant when *P* changes its direction of motion.

(5)

In this question, solutions relying on calculator technology are not acceptable.

(Total for question = 9 marks)

Q5.

At time *t* seconds, where $t \ge 0$, a particle *P* moves so that its acceleration **a** m s⁻² is given by

$$\mathbf{a} = 5t\mathbf{i} - 15t^{\frac{1}{2}}\mathbf{j}$$

When t = 0, the velocity of *P* is 20**i** m s⁻¹

Find the speed of *P* when t = 4

(6)

(Total for question = 6 marks)

Q6.

Unless otherwise stated, whenever a numerical value of *g* is required, take g = 9.8 m s⁻² and give your answer to either 2 significant figures or 3 significant figures.

At time *t* seconds, where $t \ge 0$, a particle *P* moves in the *x*-*y* plane in such a way that its velocity **v** m s⁻¹ is given by

$$\mathbf{v} = t^{-\frac{1}{2}}\mathbf{i} - 4t\mathbf{j}$$

When t = 1, *P* is at the point *A* and when t = 4, *P* is at the point *B*.

Find the exact distance AB.

(6)

(Total for question = 6 marks)

Q7.

[In this question position vectors are given relative to a fixed origin O]

At time *t* seconds, where $t \ge 0$, a particle, *P*, moves so that its velocity **v** m s⁻¹ is given by

$$\mathbf{v} = 6t\mathbf{i} - 5t^{\frac{3}{2}}\mathbf{j}$$

When t = 0, the position vector of *P* is (-20i + 20j) m.

(a) Find the acceleration of *P* when t = 4

(b) Find the position vector of *P* when t = 4

(3)

(3)

(Total for question = 6 marks)

Q8.

- A particle, *P*, moves with constant acceleration (2i 3j) m s⁻²
- At time t = 0, the particle is at the point A and is moving with velocity (-i + 4j) m s⁻¹
- At time t = T seconds, *P* is moving in the direction of vector (3i 4j)
- (a) Find the value of *T*.

(4)

- At time *t* = 4 seconds, *P* is at the point *B*.
- (b) Find the distance *AB*.

(4)

(Total for question = 8 marks)

Q9.

A particle <i>P</i> moves with acceleration $(4\mathbf{i} - 5\mathbf{j}) \text{ m s}^{-2}$	
At time $t = 0$, P is moving with velocity $(-2i + 2j)$ m s ⁻¹	
(a) Find the velocity of P at time $t = 2$ seconds.	
At time $t = 0$, P passes through the origin O .	(2)
At time $t = T$ seconds, where $T > 0$, the particle P passes through the point A.	
The position vector of A is $(\lambda i - 4.5 j)$ m relative to O, where λ is a constant.	
(b) Find the value of <i>T</i> .	
(c) Hence find the value of λ	(4)
	(2)

(Total for question = 8 marks)

Q10.

(i) At time *t* seconds, where $t \ge 0$, a particle *P* moves so that its acceleration **a** m s⁻² is given by

$$\mathbf{a} = (1 - 4t)\mathbf{i} + (3 - t^2)\mathbf{j}$$

At the instant when t = 0, the velocity of *P* is 36i m s⁻¹

(a) Find the velocity of P when t = 4

(3) (b) Find the value of *t* at the instant when *P* is moving in a direction perpendicular to **i**

(ii) At time *t* seconds, where $t \ge 0$, a particle *Q* moves so that its position vector

r metres, relative to a fixed origin *O*, is given by

$$\mathbf{r} = (t^2 - t)\mathbf{i} + 3t\mathbf{j}$$

Find the value of *t* at the instant when the speed of Q is 5 m s⁻¹

(6)

(3)

(Total for question = 12 marks)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	Substitution of both $t = 0$ and $t = 10$	M1	2.1
	s = 0 for both $t = 0$ and $t = 10$	A1	1.1b
	Explanation ($s > 0$ for $0 < t < 10$) since $s = \frac{1}{10}t^2(t-10)^2$	A1	2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v = \frac{1}{10} \left(4t^3 - 60t^2 + 200t \right)$	A1	1.1b
	Interpretation of 'rest' to give $v = \frac{1}{10}(4t^3 - 60t^2 + 200t) = \frac{2}{5}t(t-5)(t-10) = 0$	M1	1.1b
	<i>t</i> = 0, 5, 10	A1	1.1b
	Select $t = 5$ and substitute their $t = 5$ into s	M1	1.1a
	Distance = 62.5 m	A1 ft	1.1b
		(6)	
		(9 marks)
	Notes		
A1 for n A1 Since	substituting $t = 0$ and $t = 10$ into <i>s</i> expression noting that $s = 0$ at both times ce <i>s</i> is a perfect square, $s > 0$ for all other <i>t</i> - values. or differentiating <i>s</i> w.r.t. <i>t</i> to give <i>v</i> (powers of <i>t</i> reducing by 1)		

(b) 1st M1 for differentiating s w.r.t. t to give v (powers of t reducing by 1) 1st A1 for a correct v expression in any form 2nd M1 for equating v to 0 and factorising 2nd A1 for correct t values 3rd M1 for substituting their intermediate t value into s 2rd A1 for following on incorrect t values

3rd A1 ft following an incorrect *t*-value.

Q2.

Question	Scheme	Marks	AOs
(a)	Multiply out and differentiate wrt to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v = 2t^3 - 3t^2 + t$	A1	1.1b
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t-1)(t-1) = 0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) of or 2.06 or better	A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	
	(10 mark		

Notes:				
INOLES:				
(a)				
M1: Must have 3 terms and at least two powers going down by 1				
A1: A correct expression				
DM1: Dependent on first M, for equating to zero and attempting to solve a cubic				
A1: Any two of the three values (Two correct answers can imply a correct method)				
A1: The third value				
(b)				
M1: For attempting to find the values of x (at least two) at their t values found in (a) or at $t=2$				
or equivalent e.g. they may integrate their v and sub in at least two of their t values				
M1: Using a correct strategy to combine their distances (must have at least 3 distances)				
A1: $2\frac{1}{16}$ (m) of or 2.06 or better				
(c)				
M1: Identify strategy to solve the problem such as:				
(i) writing x as $\frac{1}{2}$ × perfect square				
(ii) or using x values identified in (b).				
 (iii) or using calculus i.e. identifying min points on x-t graph. (iv) or using x-t graph. 				
Al cso : Fully correct explanation to show that $x \ge 0$ i.e. never negative				

U 3.

Question	Scheme	Marks	AOs	Notes
(a)	$v = 12 + 4t - t^2 = 0$ and solving	М1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or - 2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$(a = \frac{\mathrm{d}v}{\mathrm{d}t} =) 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	A1	1.1b	Substitute in <i>t</i> = 6 and get 8 (m s ⁻²) as the answer. Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^2-\frac{1}{3}t^3(+C)$	A1	1.1b	Correct expression (ignore C) only need RHS Must be used in part (b)
	$t = 3 \implies$ distance = 45 (m)	A1	1.1b	Correct distance. Ignore units
		(3)		
(8 marks)				

Q4.

Question	Scheme	Marks	AOs	
(a)	$v = 3t - 2t^2 + 14$ and differentiate	M1	3.1a	
	$a = \frac{dv}{dt} = 3 - 4t$ or $(7 - 2t) - 2(t + 2)$ using product rule	A1	1.1b	
	3-4t=0 and solve for t	M1	1.1b	
	$t = \frac{3}{4}$ oe			
		(4)		
(b)	Solve problem using $v = 0$ to find a value of $t \left(t = \frac{7}{2} \right)$	M1	3.1a	
	$v = 3t - 2t^2 + 14$ and integrate	M1	1.1b	
	$s = \frac{3t^2}{2} - \frac{2t^3}{3} + 14t$	A1	1.1b	
	Substitute $t = \frac{7}{2}$ into their <i>s</i> expression (M0 if using <i>suvat</i>)	M1	1.1b	
	$s = \frac{931}{24} = 38\frac{19}{24} = 38.79166(m)$ Accept 39 or better	A1	1.1b	
		(5)		
		(9 n	narks)	

Note	es:	
(a)	M1	Multiply out and attempt to differentiate, with at least one power decreasing
	A1	Correct expression
	M1	Equate their <i>a</i> to 0 and solve for <i>t</i>
	A 1	cao
(b)	M1	Uses $v = 0$ to obtain a value of t
	M1	Attempt to integrate, with at least one power increasing
	A1	Correct expression
	М1	Substitute in their value of t , which must have come from using $v = 0$, into their s (must have integrated)
	A1	39 or better

Question	Scheme	Marks	AOs	
	Integrate a w.r.t. time	M1	1.1a	
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{ (allow omission of C)}$	A1	1.1b	
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A1	1.1b	
	When $t = 4$, $v = 60i - 80 j$	M1	1.1b	
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a	
	Speed = 100 m s^{-1}	A1ft	1.1b	
			(6 marks)	
Notes:				
1 st M1: for integrating a w.r.t. time (powers of t increasing by 1)				
1 st A1: for a correct v expression without C				
2 nd A1: for a correct v expression including C				
2^{nd} M1: for putting $t = 4$ into their v expression				
3 rd M1: for finding magnitude of their v				
3 rd A1: ft for 100 m s ⁻¹ , follow through on an incorrect v				

Q6.

Question	Scheme	Marks	AOs
	Integrate v w.r.t. time	M1	1.1a
	$\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^{2}\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	Substitute $t = 4$ and $t = 1$ into their r	M1	1.1b
	$t = 4$, $\mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$; $t = 1$, $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$; $(2, -2)$	A1	1.1b
	$\sqrt{2^2 + (-30)^2}$	M1	1.1b
	$\sqrt{904} = 2\sqrt{226}$	A1	1.1b
		(6)	
		(6 1	marks)
Notes: Allow	column vectors throughout		
M1: At least one power increasing by 1.			
A1: Any correct (unsimplified) expression			
M1: Must have attempted to integrate v. Substitute $t = 4$ and $t = 1$ into their r to produce 2 vectors (or 2 points if just working with coordinates).			
A1: $4i - 32j(+C)$ and $2i - 2j(+C)$ or $(4, -32)$ and $(2, -2)$. These can be seen or implied.			
M1: Attempt at distance of form $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for their points. Must have 2 non zero terms.			
A1: $\sqrt{904} = 2\sqrt{226}$ or any equivalent surd (exact answer needed)			

Q7	
----	--

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathbf{a} = 6\mathbf{i} - \frac{15}{2}t^{\frac{1}{2}}\mathbf{j}$	M1	This mark is given for a method to differentiate the expression for v
		A1	This mark is given for correctly differentiating the expression for v
	= 6 i – 15 j m s ⁻¹	A1	This mark is given for substituting $t = 4$ to find a correct vector expression for the acceleration of <i>P</i>
(b)	$\mathbf{r} = (\mathbf{r}_0) + 3t^2 \mathbf{i} - 2t^{\frac{5}{2}} \mathbf{j}$	М1	This mark is given for a method to integrate the expression for v
		A1	This mark is given for correctly integrating the expression for v
	$(-20\mathbf{i} + 20\mathbf{j}) + (48\mathbf{i} - 64\mathbf{j})$ = $28\mathbf{i} - 44\mathbf{j} \mathbf{m}$	A1	This mark is given for substituting $t = 4$ to find a correct position vector of P
			(Total 6 marks)

Q8.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t$ $\mathbf{v} = (-\mathbf{i} + 4\mathbf{j}) + (2\mathbf{i} - 3\mathbf{j})t$	M1	This mark is given for a method to find a vector expression for v
	$= (-1 + 2t)\mathbf{i} + (4 - 3t)\mathbf{j}$	A1	This mark is given for finding a correct vector expression for v
	$\frac{4-3T}{1+2T} = \frac{-4}{3}$	M1	This mark is given for a correct use of ratios as a method to find the value of T
	12 - 9T = 4 - 8T T = 12 - 4 = 8	A1	This mark is given for finding the correct value of T
(b)	$\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ $\mathbf{s} = (-\mathbf{i} + 4\mathbf{j})t + \frac{1}{2}(2\mathbf{i} - 3\mathbf{j})t^2$	M1	This mark is given for a method to find a vector expression for the distance AB
	$= (-t+t^2)\mathbf{i} + \left(4t - \frac{3}{2}t^2\right)\mathbf{j}$	A1	This mark is given for finding a correct vector expression for the distance AB
	$AB = \sqrt{12^2 + 8^2}$	M1	This mark is given for a method to find the distance AB using Pythagoras and substituting $t = 4$
	= 14.4 m	A1	This mark is given for find a correct value for the distance <i>AB</i>
			(Total 8 marks)

Q9.

Question	Scheme	Marks	AOs
(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ or integrate to give: $\mathbf{v} = (-2\mathbf{i} + 2\mathbf{j}) + 2(4\mathbf{i} - 5\mathbf{j})$	M1	3.1a
	(6i-8j) (m s ⁻¹)	A1	1.1b
		(2)	
(b)	Solve problem through use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ or integration (M0 if $\mathbf{u} = 0$) Or any other complete method e.g use $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ and $\mathbf{r} = \frac{(\mathbf{u} + \mathbf{v})T}{2}$:	M1	3.1a
	$-4.5\mathbf{j} = 2t\mathbf{j} - \frac{1}{2}t^2 5\mathbf{j} \qquad (\mathbf{j} \text{ terms only})$	A1	1.1b
	The first two marks could be implied if they go straight to an algebraic equation.		
	Attempt to equate j components to give equation in T only $(-4.5 = 2T - \frac{5}{2}T^2)$	M1	2.1
	<i>T</i> = 1.8	A1	1.1b
		(4)	
(c)	Solve problem by substituting <u>their</u> <i>T</i> value (M0 if $T < 0$) into the i component equation to give an equation in λ only: $\lambda = -2T + \frac{1}{2}T^2 \times 4$	M1	3.1a
	$\lambda = 2.9 \text{ or } 2.88 \text{ or } \frac{72}{25} \text{ oe}$	A1	1.1b
		(2)	
Notes: Acce	Notes: Accept column vectors throughout (8 mar		

Not	es: Acc	ept column vectors throughout (8 marks)
2a	M1	For any complete method to give a v expression with correct no. of terms with $t = 2$ used, so if integrating, must see the initial velocity as the constant. Allow sign errors.
	A1	Cao isw if they go on to find the speed.
2b	M1	For any complete method to give a vector expression for j component of displacement in t (or T) only, using $\mathbf{a} = (4\mathbf{i} - 5\mathbf{j})$, so if integrating, RHS of equation must have the correct structure. Allow sign errors.
	A1	Correct j vector equation in t or T . Ignore i terms.
	M1	Must have earned 1^{st} M mark. Equate j components to give equation in T (allow t) only (no j's) which has come from a displacement. Equation must be a 3 term quadratic in T.
	A1	cao
2c	M1	Must have earned 1 st M mark in (b) Complete method - must have an equation in λ only (no i's) which has come from an appropriate displacement (e.g M0 if $a = 0$ has been used) Expression for λ must be a quadratic in T
	A1	сао

Question	Scheme	Marks	AOs
(i)(a)	Integrate a wrt t to obtain velocity	M1	3.4
	$\mathbf{v} = (t - 2t^2)\mathbf{i} + \left(3t - \frac{1}{3}t^3\right)\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	$8i - \frac{28}{3}j \ (m \ s^{-1})$	A1	1.1b
		(3)	
(i)(b)	Equate i component of v to zero	M1	3.1a
	$t - 2t^2 + 36 = 0$	A1ft	1.1b
	t = 4.5 (ignore an incorrect second solution)	A1	1.1b
		(3)	
(ii)	Differentiate r wrt to t to obtain velocity	M1	3.4
	$\mathbf{v} = (2t - 1)\mathbf{i} + 3\mathbf{j}$	A1	1.1b
	Use magnitude to give an equation in t only	M1	2.1
	$(2t-1)^2 + 3^2 = 5^2$	A1	1.1b
	Solve problem by solving this equation for t	M1	3.1a
	t = 2.5	A1	1.1b
		(6)	
		(12 m	narks)

Notes: Accept column vectors throughout		
(i)(a)	a) M1 At least 3 terms with powers increasing by 1 (but M0 if clearly just multiplying b	
	A1	Correct expression
	A1	Accept 8i-9.3j or better. Isw if speed found.
(i)(b)	M1	Must have an equation in t only (Must have integrated to find a velocity vector)
	A1 ft	Correct equation follow through on their v but must be a 3 term quadratic
	A1	cao
(ii)	M1	At least 2 terms with powers decreasing by 1 (but M0 if clearly just dividing by t)
	A1	Correct expression
	M 1	Use magnitude to give an equation in t only, must have differentiated to find a velocity (M0 if they use $\sqrt{x^2 - y^2}$)
	A1	Correct equation $\sqrt{(2t-1)^2+3^2} = 5$
	M1	Solve a 3 term quadratic for <i>t</i> which has come from differentiating and using a magnitude. This M mark can be implied by a correct answer with no working.
	A1	2.5