Questions

Q1.

A bird leaves its nest at time $t=0$ for a short flight along a straight line.
The bird then returns to its nest.
The bird is modelled as a particle moving in a straight horizontal line.
The distance, s metres, of the bird from its nest at time t seconds is given by

$$
s=\frac{1}{10}\left(t^{4}-20 t^{3}+100 t^{2}\right), \text { where } 0 \leqslant t \leqslant 10
$$

(a) Explain the restriction, $0 \leq t \leq 10$
(b) Find the distance of the bird from the nest when the bird first comes to instantaneous rest.

Q2.

Unless otherwise indicated, wherever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

A particle, P, moves along the x-axis. At time t seconds, $t \geq 0$, the displacement, x metres, of P from the origin O, is given by $x=\frac{1}{2} t^{2}\left(t^{2}-2 t+1\right)$
(a) Find the times when P is instantaneously at rest.
(b) Find the total distance travelled by P in the time interval $0 \leq t \leq 2$
(c) Show that P will never move along the negative x-axis.

Q3.

A particle, P, moves along a straight line such that at time t seconds, $t \geq 0$, the velocity of P, $v \mathrm{~m} \mathrm{~s}^{-1}$, is modelled as

$$
v=12+4 t-t^{2}
$$

Find
(a) the magnitude of the acceleration of P when P is at instantaneous rest,
(b) the distance travelled by P in the interval $0 \leq t \leq 3$

Q4.

A particle P moves along a straight line such that at time t seconds, $t \geq 0$, after leaving the point O on the line,
the velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, of P is modelled as

$$
v=(7-2 t)(t+2)
$$

(a) Find the value of t at the instant when P stops accelerating.
(b) Find the distance of P from O at the instant when P changes its direction of motion.

In this question, solutions relying on calculator technology are not acceptable.

Q5.

At time t seconds, where $t \geq 0$, a particle P moves so that its acceleration a $\mathrm{m} \mathrm{s}^{-2}$ is given by

$$
\mathbf{a}=5 t \mathbf{i}-15 t^{\frac{1}{2}} \mathbf{j}
$$

When $t=0$, the velocity of P is $20 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1}$
Find the speed of P when $t=4$

Q6.

Unless otherwise stated, whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

At time t seconds, where $t \geq 0$, a particle P moves in the $x-y$ plane in such a way that its velocity $\mathbf{v ~ m ~ s}^{-1}$ is given by

$$
\mathbf{v}=t^{-\frac{1}{2}} \mathbf{i}-4 \mathbf{j} \mathbf{j}
$$

When $t=1, P$ is at the point A and when $t=4, P$ is at the point B.
Find the exact distance $A B$.

Q7.
[In this question position vectors are given relative to a fixed origin O]
At time t seconds, where $t \geq 0$, a particle, P, moves so that its velocity $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$ is given by

$$
\mathbf{v}=6 t \mathbf{i}-5 t^{\frac{3}{2}} \mathbf{j}
$$

When $t=0$, the position vector of P is $(-20 \mathbf{i}+20 \mathbf{j}) \mathrm{m}$.
(a) Find the acceleration of P when $t=4$
(b) Find the position vector of P when $t=4$

Q8.

A particle, P, moves with constant acceleration $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$
At time $t=0$, the particle is at the point A and is moving with velocity $(-\mathbf{i}+4 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$
At time $t=T$ seconds, P is moving in the direction of vector $(3 \mathbf{i}-4 \mathbf{j})$
(a) Find the value of T.

At time $t=4$ seconds, P is at the point B.
(b) Find the distance $A B$.

Q9.

A particle P moves with acceleration $(4 \mathbf{i}-5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$
At time $t=0, P$ is moving with velocity $(-2 \mathbf{i}+2 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$
(a) Find the velocity of P at time $t=2$ seconds.

At time $t=0, P$ passes through the origin O.
At time $t=T$ seconds, where $T>0$, the particle P passes through the point A.
The position vector of A is $(\lambda \mathbf{i}-4.5 \mathrm{j}) \mathrm{m}$ relative to O, where λ is a constant.
(b) Find the value of T.
(c) Hence find the value of λ

Q10.
(i) At time t seconds, where $t \geq 0$, a particle P moves so that its acceleration a $\mathrm{m} \mathrm{s}^{-2}$ is given by

$$
\mathbf{a}=(1-4 t) \mathbf{i}+\left(3-t^{2}\right) \mathbf{j}
$$

At the instant when $t=0$, the velocity of P is $36 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1}$
(a) Find the velocity of P when $t=4$
(b) Find the value of t at the instant when P is moving in a direction perpendicular to \mathbf{i}
(ii) At time t seconds, where $t \geq 0$, a particle Q moves so that its position vector \mathbf{r} metres, relative to a fixed origin O, is given by

$$
\mathbf{r}=\left(t^{2}-t\right) \mathbf{i}+3 t \mathbf{j}
$$

Find the value of t at the instant when the speed of Q is $5 \mathrm{~m} \mathrm{~s}^{-1}$

Mark Scheme

Q1.

Question	Scheme	Marks	AOS
(a)	Substitution of both $t=0$ and $t=10$	M1	2.1
	$s=0$ for both $t=0$ and $t=10$	A1	1.1b
	Explanation ($s>0$ for $0<t<10$) since $s=\frac{1}{10} t^{2}(t-10)^{2}$	A1	2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v=\frac{1}{10}\left(4 t^{3}-60 t^{2}+200 t\right)$	A1	1.1 b
	Interpretation of 'rest' to give $v=\frac{1}{10}\left(4 t^{3}-60 t^{2}+200 t\right)=\frac{2}{5} t(t-5)(t-10)=0$	M1	1.1b
	$t=0,5,10$	A1	1.1b
	Select $t=5$ and substitute their $t=5$ into s	M1	1.1a
	Distance $=62.5 \mathrm{~m}$	A1 ft	1.1b
		(6)	
(9 marks)			
Notes			
(a) M1 for substituting $t=0$ and $t=10$ into s expression A1 for noting that $s=0$ at both times A1 Since s is a perfect square, $s>0$ for all other t - values. (b) $1^{\text {st }} \mathrm{M} 1$ for differentiating s w.r.t. t to give v (powers of t reducing by 1) $1^{\text {st }} \mathrm{A} 1$ for a correct v expression in any form $2^{\text {nd }} \mathrm{M} 1$ for equating v to 0 and factorising $2^{\text {nd }} \mathrm{A} 1$ for correct t values $3^{\text {rd }} \mathrm{M} 1$ for substituting their intermediate t value into s $3^{\mathrm{rd}} \mathrm{A} 1 \mathrm{ft}$ following an incorrect t-value.			

Q2.

Question	Scheme	Marks	AOs
(a)	Multiply out and differentiate wrt to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v=2 t^{3}-3 t^{2}+t$	A1	1.1b
	$2 t^{3}-3 t^{2}+t=0$ and solve: $t(2 t-1)(t-1)=0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t=0, \frac{1}{2}, 1$ and $2:\left(0, \frac{1}{32}, 0,2\right)$	M1	2.1
	Distance $=\frac{1}{32}+\frac{1}{32}+2$	M1	2.1
	$2 \frac{1}{16}(\mathrm{~m})$ oe or 2.06 or better	A1	1.1b
		(3)	
(c)	$x=\frac{1}{2} t^{2}(t-1)^{2}$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \geq 0$ i.e. never negative	A1 cso	2.4
		(2)	
(10 marks)			

Notes:

(a)

M1: Must have 3 terms and at least two powers going down by 1
Al: A correct expression
DM1: Dependent on first M , for equating to zero and attempting to solve a cubic
Al: Any two of the three values (Two correct answers can imply a correct method)
Al: The third value
(b)

M1: For attempting to find the values of x (at least two) at their t values found in (a) or at $t=2$
or equivalent e.g. they may integrate their v and sub in at least two of their t values
M1: Using a correct strategy to combine their distances (must have at least 3 distances)
Al: $2 \frac{1}{16}(\mathrm{~m})$ oe or 2.06 or better
(c)

MI: Identify strategy to solve the problem such as:
(i) writing x as $\frac{1}{2} \times$ perfect square
(ii) or using x values identified in (b).
(iii) or using calculus i.e. identifying \min points on $x-t$ graph.
(iv) or using $x-t$ graph.

Al cso : Fully correct explanation to show that $x \geq 0$ i.e. never negative

Q3.

Question	Scheme	Marks	AOs	Notes
(a)	$v=12+4 t-t^{2}=0$ and solving	M1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	$t=6$ (or -2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$\left(a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\right)^{4-2 t}$	A1	1.1b	Cao; only need RHS
	When $t=6, a=-8$; Magnitude is 8 ($\mathrm{m} \mathrm{s}^{-2}$)	A1	1.1b	Substitute in $t=6$ and get $8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ as the answer . Must be positive. (A 0 if two answers given)
		(5)		
(b)	Integrate v wrt t $(s=) 12 t+2 t^{2}-\frac{1}{3} t^{3}(+C)$	M1 A1	3.1a $1.1 \mathrm{~b}$	For integration (at least two powers increasing by 1) Correct expression (ignore C) only need RHS Must be used in part (b)
	$t=3 \Rightarrow$ distance $=45(\mathrm{~m})$	A1	1.1b	Correct distance. Ignore units
		(3)		
(8 marks)				

Q4.

Question	Scheme	Marks	AOs
(a)	$v=3 t-2 t^{2}+14$ and differentiate	M1	3.1a
	$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=3-4 t \quad$ or $\quad(7-2 t)-2(t+2)$ using product rule	A1	1.1b
	$3-4 t=0$ and solve for t	M1	1.1b
	$t=\frac{3}{4}$ oe	A1	1.1b
		(4)	
(b)	Solve problem using $v=0$ to find a value of $t\left(t=\frac{7}{2}\right)$	M1	3.1a
	$v=3 t-2 t^{2}+14$ and integrate	M1	1.1 b
	$s=\frac{3 t^{2}}{2}-\frac{2 t^{3}}{3}+14 t$	A1	1.1b
	Substitute $t=\frac{7}{2}$ into their s expression (M0 if using suvat)	M1	1.1b
	$s=\frac{931}{24}=38 \frac{19}{24}=38.79166 . .(\mathrm{m}) \quad$ Accept 39 or better	A1	1.1b
		(5)	
(9 marks)			

Notes:		
(a)	M1	Multiply out and attempt to differentiate, with at least one power decreasing
	A1	Correct expression
	M1	Equate their a to 0 and solve for t
	A1	cao
(b)	M1	Uses $v=0$ to obtain a value of t
	M1	Attempt to integrate, with at least one power increasing
	A1	Correct expression
	M1	Substitute in their value of t, which must have come from using $v=0$, into their s (must have integrated)
	A1	39 or better

Q5.

Question	Scheme	Marks	AOs
	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v}=\frac{5 t^{2}}{2} \mathbf{i}-10 t^{\frac{3}{2}} \mathbf{j}+\mathbf{C}$ (allow omission of \mathbf{C})	A1	1.1b
	$\mathbf{v}=\frac{5 t^{2}}{2} \mathbf{i}-10 t^{\frac{3}{2}} \mathbf{j}+20 \mathbf{i}$	A1	1.1b
	When $t=4, \mathbf{v}=60 \mathbf{i}-80 \mathrm{j}$	M1	1.1b
	Attempt to find magnitude: $\sqrt{ }\left(60^{2}+80^{2}\right)$	M1	3.1a
	Speed $=100 \mathrm{~m} \mathrm{~s}^{-1}$	A1ft	1.1b
(6 marks)			
Notes:			
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for integrating a w.r.t. time (powers of t increasing by 1) $1^{\text {st }} \mathrm{A} 1$: for a correct v expression without C $2^{\text {nd }} A 1$: for a correct v expression including C $2^{\text {nd }} \mathbf{M} 1$: for putting $t=4$ into their \mathbf{v} expression $3^{\text {rd }} \mathrm{M} 1$: for finding magnitude of their v $\mathbf{3}^{\text {rd }} \mathbf{A 1}$: ft for $100 \mathrm{~m} \mathrm{~s}^{-1}$, follow through on an incorrect \mathbf{v}			

Q6.

Question	Scheme	Marks	AOs
	Integrate \mathbf{v} w.r.t. time	M1	1.1a
	$\mathbf{r}=2 t^{\dagger} \mathbf{i}-2 t^{2} \mathbf{j}(+\mathbf{C})$	A1	1.1b
	Substitute $t=4$ and $t=1$ into their \mathbf{r}	M1	1.1b
	$t=4, \mathbf{r}=4 \mathbf{i}-32 \mathbf{j}(+\mathbf{C}) ; t=1, \mathbf{r}=2 \mathbf{i}-2 \mathbf{j}(+\mathbf{C})$ or $(4,-32) ;(2,-2)$	A1	1.1b
	$\sqrt{2^{2}+(-30)^{2}}$	M1	1.1b
	$\sqrt{904}=2 \sqrt{226}$	A1	1.1b
		(6)	
(6 marks)			
Notes: Allow column vectors throughout			
MII: At least one power increasing by 1 . Al: Any correct (unsimplified) expression MI: Must have attempted to integrate \mathbf{v}. Substitute $t=4$ and $t=1$ into their \mathbf{r} to produce 2 vectors (or 2 points if just working with coordinates). Al: $4 \mathbf{i}-32 \mathbf{j}(+\mathbf{C})$ and $2 \mathbf{i}-2 \mathbf{j}(+\mathbf{C})$ or $(4,-32)$ and $(2,-2)$. These can be seen or implied. M1: Attempt at distance of form $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for their points. Must have 2 non zero terms. Al: $\sqrt{904}=2 \sqrt{226}$ or any equivalent surd (exact answer needed)			

Q7.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathbf{a}=6 \mathbf{i}-\frac{15}{2} t^{\frac{1}{2}} \mathbf{j}$	M1	This mark is given for a method to differentiate the expression for \mathbf{v}
	A1	This mark is given for correctly differentiating the expression for \mathbf{v}	
	$=6 \mathbf{i}-15 \mathbf{j} \mathrm{~m} \mathrm{~s}^{-1}$	A1	This mark is given for substituting $t=4$ to find a correcet vector expression for the acceleration of P
(b)	$\mathbf{r}=\left(\mathbf{r}_{\mathbf{0}}\right)+3 t^{2} \mathbf{i}-2 t^{\frac{5}{2}} \mathbf{j}$	M1	This mark is given for a method to integrate the expression for \mathbf{v}
	A1	This mark is given for correctly integrating the expression for \mathbf{v}	

Q8.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\begin{aligned} & \mathbf{v}=\mathbf{u}+\mathbf{a} t \\ & \mathbf{v}=(-\mathbf{i}+4 \mathbf{j})+(2 \mathbf{i}-3 \mathbf{j}) t \end{aligned}$	M1	This mark is given for a method to find a vector expression for \mathbf{v}
	$=(-1+2 t) \mathbf{i}+(4-3 t) \mathbf{j}$	A1	This mark is given for finding a correct vector expression for \mathbf{v}
	$\frac{4-3 T}{1+2 T}=\frac{-4}{3}$	M1	This mark is given for a correct use of ratios as a method to find the value of T
	$\begin{aligned} & 12-9 T=4-8 T \\ & T=12-4=8 \end{aligned}$	A1	This mark is given for finding the correct value of T
(b)	$\begin{aligned} & \mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2} \\ & \mathbf{s}=(-\mathbf{i}+4 \mathbf{j}) t+\frac{1}{2}(2 \mathbf{i}-3 \mathbf{j}) t^{2} \end{aligned}$	M1	This mark is given for a method to find a vector expression for the distance $A B$
	$=\left(-t+t^{2}\right) \mathbf{i}+\left(4 t-\frac{3}{2} t^{2}\right) \mathbf{j}$	A1	This mark is given for finding a correct vector expression for the distance $A B$
	$A B=\sqrt{12^{2}+8^{2}}$	M1	This mark is given for a method to find the distance $A B$ using Pythagoras and substituting $t=4$
	$=14.4 \mathrm{~m}$	A1	This mark is given for find a correct value for the distance $A B$
			(Total 8 marks)

Q9.

Question	Scheme	Marks	AOS
(a)	Use of $\mathbf{v}=\mathbf{u}+\mathbf{a t}$ or integrate to give: $\mathbf{v}=(-2 \mathbf{i}+2 \mathbf{j})+2(4 \mathbf{i}-5 \mathbf{j})$	M1	3.1a
	$(6 \mathbf{i}-8 \mathrm{j})\left(\mathrm{m} \mathrm{s}^{-1}\right)$	A1	1.1b
		(2)	
(b)	Solve problem through use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ or integration (M0 if $\mathbf{u}=\mathbf{0}$) Or any other complete method e.g use $\mathbf{v}=\mathbf{u}+\mathbf{a} T$ and $\mathbf{r}=\frac{(\mathbf{u}+\mathbf{v}) T}{2}$	M1	3.1a
	$-4.5 \mathbf{j}=2 t \mathrm{j}-\frac{1}{2} t^{2} 5 \mathbf{j} \quad$ (j terms only)	A1	1.1b
	The first two marks could be implied if they go straight to an algebraic equation.		
	Attempt to equate \mathbf{j} components to give equation in T only $\left(-4.5=2 T-\frac{5}{2} T^{2}\right)$	M1	2.1
	$T=1.8$	A1	1.1 b
		(4)	
(c)	Solve problem by substituting their T value (M 0 if $T<0$) into the i component equation to give an equation in λ only: $\lambda=-2 T+\frac{1}{2} T^{2} \times 4$	M1	3.1a
	$\lambda=2.9$ or 2.88 or $\frac{72}{25}$ oe	A1	1.1b
		(2)	
Notes: Accept column vectors throughout (8 marks)			

	Ac	t column vectors throughout (8 marks)
2a	M1	For any complete method to give a v expression with correct no. of terms with $t=2$ used, so if integrating, must see the initial velocity as the constant. Allow sign errors.
	A1	Cao isw if they go on to find the speed.
2b	M1	For any complete method to give a vector expression for j component of displacement in t (or T) only, using $\mathbf{a}=(4 \mathbf{i}-5 \mathbf{j})$, so if integrating, RHS of equation must have the correct structure. Allow sign errors.
	A1	Correct j vector equation in t or T. Ignore i terms.
	M1	Must have earned $1^{\text {st }} \mathrm{M}$ mark. Equate \mathbf{j} components to give equation in T (allow t) only (no \mathbf{j} 's) which has come from a displacement. Equation must be a 3 term quadratic in T.
	A1	cao
2 c	M1	Must have earned $1^{\text {st }} \mathrm{M}$ mark in (b) Complete method - must have an equation in λ only (no i's) which has come from an appropriate displacement. (e.g M0 if $\mathbf{a}=0$ has been used) Expression for λ must be a quadratic in T
	A1	cao

Q10.

Question	Scheme	Marks	AOs
(i)(a)	Integrate a wrt t to obtain velocity	M1	3.4
	$\mathbf{v}=\left(t-2 t^{2}\right) \mathbf{i}+\left(3 t-\frac{1}{3} t^{3}\right) \mathbf{j}(+\mathbf{C})$	A1	1.1b
	$8 \mathrm{i}-\frac{28}{3} \mathrm{j}\left(\mathrm{m} \mathrm{s}^{-1}\right)$	A1	1.1b
		(3)	
(i)(b)	Equate i component of v to zero	M1	3.1a
	$t-2 t^{2}+36=0$	A1ft	1.1b
	$t=4.5$ (ignore an incorrect second solution)	A1	1.1b
		(3)	
(ii)	Differentiate r wrt to t to obtain velocity	M1	3.4
	$\mathbf{v}=(2 t-1) \mathrm{i}+3 \mathrm{j}$	A1	1.1b
	Use magnitude to give an equation in t only	M1	2.1
	$(2 t-1)^{2}+3^{2}=5^{2}$	A1	1.1b
	Solve problem by solving this equation for t	M1	3.1a
	$t=2.5$	A1	1.1b
		(6)	
(12 marks)			

Notes: Accept column vectors throughout

(i)(a)	M1	At least 3 terms with powers increasing by 1 (but M0 if clearly just multiplying by t)
	A1	Correct expression
	A1	Accept $8 \mathbf{i}-9.3 \mathrm{j}$ or better. Isw if speed found.
(i)(b)	M1	Must have an equation in t only (Must have integrated to find a velocity vector)
	A1 ft	Correct equation follow through on their v but must be a 3 term quadratic
	A1	cao
(ii)	M1	At least 2 terms with powers decreasing by 1 (but M0 if clearly just dividing by t)
	A1	Correct expression
	M1	Use magnitude to give an equation in t only, must have differentiated to find a velocity (M0 if they use $\left.\sqrt{x^{2}-y^{2}}\right)$
	A1	Correct equation $\sqrt{(2 t-1)^{2}+3^{2}}=5$

